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ABSTRACT 51 

This paper presents PREDICTOR (PREDICting Take-Over Response time): an interactive 52 

open-source research software tool to predict the timing of various stages of a transition of 53 

control, or take-over, in semi-automated driving. Although previous work has investigated 54 

extensively what factors affect the minimum time needed for a successful take-over by the 55 

driver, less is known about how specific stages within the take-over process are affected by 56 

those factors. PREDICTOR applies a theoretical framework that describes the take-over 57 

process as interruption handling through a series of stages. It then ties this theory to a 58 

database that summarizes results from previous take-over studies. PREDICTOR can be used 59 

to interactively predict through simulation how specific human factors (e.g., alert modality, 60 

alert onset time) impact four distinct stages of the take-over response process. The tool 61 

simulates and visualizes expected reaction time distributions for each stage of the take-over 62 

process. The use of distributions also highlights the likelihood of an accident – as long 63 

responses (“outliers”) are quantifiable. Moreover, it can help understand at which stage 64 

drivers might take relatively longer or shorter, and which stages are most impacted by a 65 

specific factor (e.g., alert modality). PREDICTOR also allows users to add their own data, 66 

and to define their own dependent variables for analysis. As a tool that allows exploration of 67 

various scenarios, PREDICTOR can aid in the prediction and analysis of potential future 68 

accidents. 69 

 70 

 71 

Keyword: Transitions of Control; Take-over Request; Cognitive Model; Interruption 72 

Handling 73 

 74 
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1 Introduction 75 

Although the willingness to adopt automated vehicles is not yet high (e.g., Adnan, 2024; 76 

Arowolo et al., 2024), and there are legal (Sever & Contissa, 2024) and other concerns about 77 

them (e.g., are these technologies even developed for the right reasons? see, Almlöf, 2024), 78 

there is a need to investigate how the use of (semi-) automated vehicles impacts human 79 

behavior – the human factors (Gerber et al., 2023). Investigating human factors is particularly 80 

urgent, given that the functionality of (semi-) automated vehicles has increased over the last 81 

few decades. Current commercial systems can do more than merely assist the driver 82 

occasionally and instead are able to control aspects of the drive for prolonged periods of time, 83 

during which the human driver monitors the system and the environment (i.e., SAE levels 2 84 

to 3, SAE International, 2014). If either the car requests, or the human desires, a transition of 85 

control can take place in which the other party (e.g., human or car) takes over main control 86 

(McCall et al., 2019; Mirnig et al., 2017). If the transition of control process is initiated by 87 

the car, this is often referred to as a take-over request. Such a take-over request can for 88 

example be given in response to bad weather, road construction works, or other events that 89 

the car cannot handle on its own.  90 

 A meta-review by Zhang, de Winter, Varotto, Happee, and Martens (2019) analyzed 91 

129 take-over studies (i.e., SAE level 2 and up). The results showed that the large majority of 92 

studies reported situations with fast response times (Mresponse time = 2.7 s; SD response time = 1.45s; 93 

only one study above 10 s, with 19.79 s). However, as automation improves, and the car is 94 

able to take control of the ride for longer segments of time, it is possible that drivers perform 95 

other tasks during the drive (e.g., Hancock, 2013; Janssen et al., 2019). Drivers already 96 

perform such non-driving activities during non-automated manual driving (e.g., Dingus et al., 97 

2016; Klauer et al., 2014) and they have expressed interest to perform a wide variety of non-98 
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driving activities during highly automated driving (e.g., Pfleging et al., 2016; Stevens et al., 99 

2019).  100 

Therefore, one might wonder whether studies that describe take-over as a simple, fast 101 

response process are merely a ‘convenience’ instead of a true description of likely human 102 

behavior (de Winter et al., 2021). The conception with which engineers have designed the 103 

system (often: for an immediate take-over) might not align with actual human behavior (for a 104 

broader discussion on misconceptions, see also Walker et al., 2020). Specifically, in the 105 

context in which drivers perform other tasks during the automated drive and where 106 

automation becomes more reliable, human drivers might not immediately give up on their 107 

original task (Janssen et al., 2019), even though current commercially available vehicles are 108 

designed for immediate take-over. Various research groups have therefore started to 109 

investigate the psychological process of take-over requests in more detail, with an emphasis 110 

on understanding how an ‘interruption’ by an alert is handled when one was also attending 111 

other (non-driving related) tasks or activities (e.g., Ch, 2023; Ch et al., 2024; Gerber et al., 112 

2020, 2024; Janssen et al., 2019; Nagaraju et al., 2021; Naujoks et al., 2017; Wintersberger et 113 

al., 2018).  One long-term goal in such efforts is to have accurate, detailed theory- and 114 

model-based predictions of human take-over responses that can inform the design of future 115 

interfaces.  116 

State-of-the-art computational cognitive modeling tools for human-automated vehicle 117 

interaction are not yet that far (e.g., see reviews in Janssen et al., 2024; Lorenz et al., 2024); 118 

and current theories and models can not yet be applied in interactive software (which has 119 

been done for “regular” driving in the past Salvucci, 2009). Yet, theoretical advances have 120 

been made in understanding the psychological underpinnings of take-over requests. 121 

Specifically, Janssen, Iqbal, Kun, and Donker (2019) proposed that the process of a take-over 122 

should not be considered as a rapid task switch in which the driver always responds to an 123 
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alert immediately. Instead, they argue that it can be considered a gradual process of 124 

interruption handling.  125 

There are many detailed theories of interruption handling from other fields (e.g., 126 

Altmann & Trafton, 2002; Boehm-Davis & Remington, 2009; Borst et al., 2015; Couffe & 127 

Michael, 2017; Salvucci & Taatgen, 2008, 2011; Sanderson & Grundgeiger, 2015). Although 128 

they differ in the details, all these theories propose that when attention is moved between two 129 

discrete tasks, there is a process in which specific stages can be identified. In the case of 130 

switching between a non-driving related task (e.g., reading e-mails) and driving during a 131 

transition of control, at least 10 stages can be identified in the process of going from not 132 

driving, to taking over control of a car, to eventually handing control back to the car, and to 133 

resume the non-driving related task again (Janssen et al., 2019).  134 

Although the theoretical framework of Janssen and colleagues provides qualitative 135 

insights about these stages, it does not provide quantitative predictions of the timing of these 136 

various stages. However, such quantitative predictions are needed to get to the long-term goal 137 

of integrated, embedded, predictive computational cognitive models (Janssen et al., 2024). 138 

There are two reasons why such quantitative predictions do not yet exist. First, most current 139 

studies on take-over response times do not yet explicitly couple their results to stages of the 140 

interruption framework. Second, quantitative predictions from studies outside of the driving 141 

domain are hard to couple directly to driving scenarios.  142 

 The contribution of the current paper is to address this gap and quantify predictions 143 

for four stages of the interruption framework. Specifically, the paper provides an open-source 144 

interactive tool, called PREDICTOR (PREDICt Take-Over Response time), that can be used 145 

to predict how various human factors impact the duration of four of the stages from the 146 

interruption model proposed by Janssen et al (2019). These stages describe the process 147 

between initial alert onset and the first physical act of initiating control by the human driver. 148 
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PREDICTOR allows users to add studies and study results, and to label them for factors that 149 

they want to analyze -- aligning with the perspective that visualization is essential to 150 

understand human driver behavior (Donmez et al., 2023)  151 

PREDICTOR can aid researchers by allowing them to simulate and visualize (cf. 152 

Donmez et al., 2023) expected distributions of response times for each stage of the take-over 153 

process. Through visualization of data (cf. Donmez et al., 2023), it allows quick inspection of 154 

patterns in the literature. This can then be compared to the results of researchers’ own studies, 155 

and their data can also be integrated in the tool to test and visualize how both align. In section 156 

5, examples are provided of initial theoretical insights that the tool gives. 157 

PREDICTOR can also aid practitioners and designers of vehicle interfaces. As the 158 

consideration of take-overs as interruptions has so far mostly been the focus of theoretical 159 

research (Janssen et al., 2019), it is a crucial way to move the underlying ideas forward to 160 

practice. In particular, the ability to predict distributions allows consideration of more than 161 

mean response, for example, the likelihood of slow responses (which are often treated as 162 

“outliers” in empirical studies). In a driving safety context these slow responses are 163 

important, as they can help estimate the likelihood that a specific response deadline is not 164 

made (e.g., whether people respond within the current conventional 5-7 s after alert onset, 165 

Gold et al., 2013). Such delayed responses in turn might be an indicator of accident 166 

likelihood. It might help designers in considering how their interface might impact not only 167 

the average user, but also these more extremes.  168 

 The remainder of this paper is structured as follows. First, the underlying theoretical 169 

framework is described in more detail. Second, follows a description of four human factors 170 

that might impact the onset of stages on the interruption framework and of which there are 171 

sufficient studies to include them in PREDICTOR as predicting variables. Third, the structure 172 

of the tool PREDICTOR is introduced. Fourth, PREDICTOR’s functionality is illustrated 173 
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through five critical tests. Finally, implications and limitations are discussed, including how 174 

users can further apply PREDICTOR in their own research: by adding studies and by testing 175 

other variables of interest. 176 

2 Transitions of control as interruptions 177 

Transitions of control can be considered as a process of multiple stages (Janssen et al., 2019). 178 

Figure 1 highlights the 5 stages where a human user takes physical control in response to an 179 

alert issued by the vehicle. Below follows a brief description of each stage; for even more 180 

detail see (Janssen et al., 2019). 181 

Starting point is the assumption that the car is initially controlling the drive, and that 182 

the human is optionally working on a non-driving related task (stage 0). Although in SAE 183 

level 3 (and lower) the human’s task is to monitor the vehicle and the traffic surroundings, in 184 

practice, humans might not always do this. Humans already perform non-driving related tasks 185 

during manual, non-automated driving (e.g., Dingus et al., 2016; Klauer et al., 2014), and 186 

might reclaim some of their time for work and play if automation levels increase (Kun et al., 187 

2016). Such behavior might particularly be expected if the automation functionality of the car 188 

becomes more reliable and advanced and if human intervention is infrequently needed. Many 189 

empirical studies of take-over therefore include distracted driving scenarios. For example, in 190 

the 520 experiments (129 studies) that Zhang et al. (2019) meta-reviewed, 377 (72.5%) 191 

contained a non-driving related task. 192 

 193 

 194 

 195 

 196 

 197 
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 198 

Figure 1: Take-over of control according to the interruption model of Janssen et al. (2019). 199 

While the automated vehicle drivers, a human might be working on a non-driving related task 200 

(stage 0). After an external alert (stage 1), they then briefly disengage from the non-driving 201 

task (stage 2) to orient to driving (stage 3). After optionally going back and forth between non-202 

driving task and orienting to driving (interleaving stage), they fully suspend the original non-203 

driving task (stage 4) to physically initiate the transfer of control (stage 5) and then (contribute 204 

to the) drive (stage 6). 205 

 206 

 The vast majority of studies uses external alerts to warn a driver of a take-over (B. 207 

Zhang et al., 2019: 486/520 studies, or 93%). Therefore, the next stage is the issuance of an 208 

alert (stage 1). The stages after stage 1 are where the framework from Janssen et al. differs 209 

from most of the current literature, as the next stage is not yet the driver’s physical response 210 

(e.g., grabbing the wheel; stage 5), but rather: disengaging from the non-driving related task 211 

(stage 2). This is defined as the first moment that a person is not visually and/or manually 212 

     

Interleaving 
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engaged with a non-driving related task. For example, the first moment they look away from 213 

their non-driving related activity (e.g., phone, in-car interface, co-driver) in response to an 214 

alert. 215 

Stage 3 is the first moment that the driver orients to the driving task and context, but 216 

at which time they do not necessarily take control of the wheel. Depending on various factors 217 

such as the time that is left before a response by the driver is required, drivers might spend 218 

some time on interleaving their attention between further orienting to the driving task and 219 

wrapping up their performance on their original, non-driving related task (for recent 220 

observations of such interleaving, see e.g., Ch, 2023;Ch et al, 2024; Large et al., 2019; 221 

Nagaraju et al., 2021).  222 

Eventually, the driver will suspend working on the non-driving related task (stage 4) 223 

and then perform a first physical action to take control of the vehicle (stage 5). This action 224 

might take various forms, such as pressing a button to “take control”, pressing the brake with 225 

the feet, making a steering correction with the hands, or perhaps even a vocal command. The 226 

physical transfer of control stage (stage 5) is then followed by a period during which there is 227 

more dedicated time for driving (stage 6).  228 

Although there are some empirical studies that have tested subsets of these detailed 229 

steps (e.g., Ch, 2023; Ch et al., 2024; Gerber et al., 2020; Nagaraju et al., 2021; Naujoks et 230 

al., 2017), these are few compared to the large bulk of empirical studies on take-over requests 231 

(e.g., 520 experiments /129 studies in B. Zhang et al., 2019), which typically measure the 232 

interval between stage 1 and 5 without considering substages. The contribution of this paper 233 

is to provide a tool, PREDICTOR, that can help to predict possible durations of the 234 

intermediate stages. The tool has a database that contains detailed information from many 235 

papers (largely based on Zhang et al’s meta-review) and then predicts potential durations of 236 

steps.  237 
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 238 

 239 

3 Influencing Human Factors on Stage Onset Times 240 

Multiple Human Factors can impact the onset and duration of the various stages of transitions 241 

of control (Janssen et al., 2019). PREDICTOR currently allows users to test the impact of 242 

four (human) factors that are reported more frequently in the literature (e.g., B. Zhang et al., 243 

2019), and therefore have sufficient studies to inform simulations: (1) Alert Onset Time, (2) 244 

Alert Modality, (3) input modality of non-driving related task, and (4) output modality of 245 

non-driving related task. While for each of these factors there have been many studies that 246 

report the effect on overall take-over time, the contribution of PREDICTOR is that it allows 247 

researchers to simulate and quantify the effect of the factors on all four stages of the take-248 

over process, as well as predicting how factors might interact with each other. 249 

 250 

3.1 Alert Onset Time 251 

Alert onset time is the time window between an alert and a future critical event where the 252 

user’s assistance (take-over) is needed (e.g., aid with navigation roadworks, or in settings 253 

where lane markings are missing). Alert onset time is important to consider in PREDICTOR, 254 

as it is positively correlated with take-over response time (B. Zhang et al., 2019). 255 

 Most studies use a relatively short alert onset (e.g., 5-8 seconds cf., Gold et al., 2013; 256 

Mok et al., 2017) and associated fast responses by the user. For example, in Zhang et al.’s 257 

meta-review (2019), 93% of the studies report a response time by users shorter than 5 s. More 258 

recent studies have introduced earlier onsets to allow drivers more time to finish what they 259 

were working on before and to allow sufficient time to orient to driving and gain situational 260 

awareness (Borojeni et al., 2018; Ch, 2023; Nagaraju et al., 2021; Van Der Heiden et al., 261 
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2017). These studies observed relatively longer response times. During such longer intervals, 262 

it is also likely that the other stages of Janssen et al’s interruption framework (2019) are 263 

observed. For example, a recent longitudinal study observed more frequent interleaving as 264 

drivers became more familiar with the vehicle (Large et al., 2019). PREDICTOR allows 265 

researchers to explore more thoroughly how variations in alert onset time might affect all 266 

four stages of the take-over process. 267 

 268 

3.2 Alert Modality 269 

External alerts can be presented in different modalities. The most common alert modalities in 270 

automated driving studies are auditory, visual, and bi-modal (audio and visual) alerts (B. 271 

Zhang et al., 2019). Although previous studies have already observed that alert modality 272 

impacts the moment of physical response (i.e., stage 5 in Figure 1), PREDICTOR allows 273 

users to now also explore systematically how modality impacts other stages of the take-over 274 

process.  275 

3.3 Input Modality of Non-driving related task  276 

The characteristics of the non-driving related task might also impact take-over performance 277 

and timing. As the potential activities that people want to do in automated vehicles varies 278 

widely (e.g., from reading e-mails, to playing games, to sleeping, Pfleging et al., 2016; 279 

Stevens et al., 2019), there is no single way to cluster all non-driving related tasks.  280 

As a start, PREDICTOR allows clustering of non-driving related tasks based on their 281 

general input and output modality. The input modality refers to the modality in which a non-282 

driving related task sends information to the user (e.g., visual, auditory, or tactile 283 

presentation). Input modality is a crucial factor in multiple resource models of cognition 284 

(Salvucci & Taatgen, 2008, 2011; Wickens, 2002, 2008). The models hypothesize that as two 285 

tasks (e.g., driving and non-driving) overlap more in their input modalities, there is more 286 
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interference and potential performance degradation of at least one task. It has not yet been 287 

studied how modality affects each of the four stages.  288 

 289 

3.4 Output Modality of Non-driving related task  290 

Output modality refers to the modality in which the user processes information or interacts 291 

with the interface of the non-driving related tasks (i.e., manual, cognitive, vocal). Output 292 

modality is loosely comparable to the term “processing stages” in Wickens’ multiple resource 293 

model (2002, 2008). However, output modality places more emphasis on the modality of 294 

interacting with a potential interface.  295 

The labeling of input and output modalities is based on how the original studies 296 

described the non-driving related task. If the non-driving related task was not explained in 297 

more detail, the descriptions from other studies using the same (or a similar) task were 298 

considered. For a non-driving related task to be categorized as requiring a cognitive modality 299 

(which – one could argue – any activity does to some degree), it had to be introduced 300 

explicitly as cognitive in the study.  Cognitive was categorized under output (and not input) 301 

modality, as, similar to the other output modalities (e.g., manual, vocal), some active 302 

processing of the participant is needed. 303 

 304 

4 PREDICTOR 305 

4.1 Aims for PREDICTOR and general overview 306 

PREDICTOR can quantitatively simulate predictions of the time interval of each stage of the 307 

take-over process. Three research questions motivated the design of PREDICTOR: 308 
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(1) How does the driver go through the four stages of the take-over process? PREDICTOR 309 

simulates, quantifies, and visualizes likely distributions of the time interval for each 310 

stage.  311 

(2) How is the distribution of timing of the four stages affected by the human factors: alert 312 

onset, alert modality, and input/output modality of the non-driving related task? 313 

PREDICTOR allows users to compare multiple simulations based on different levels 314 

of these human factors (e.g., auditory versus visual alerts), and to assess how they affect 315 

the distributions of times. Note that PREDICTOR allows users to add new studies and 316 

factors to the included database, to explore their impact. 317 

(3) How likely is the transition of control going to succeed in time for the driver to react to 318 

a critical event, and how is the success rate affected by different factors? PREDICTOR 319 

estimates the cumulative distribution of successful completion of each stage. For stage 320 

5 (i.e., the physical transfer of control) this functionality is particularly interesting, as it 321 

can help to estimate the proportion of drivers unable to take back control in time to 322 

react appropriately to a critical event. 323 

 324 

PREDICTOR was implemented using R Shiny (R version 3.6.1; Shiny version 1.3.2). 325 

The software can be used via https://predictor-tool.shinyapps.io/PREDICTOR/ . The code 326 

can also be downloaded from the Supplementary Materials, and an additional more detailed 327 

description of its structure can be found in the Supplementary Materials ‘Details on Model’. 328 

Figure 2 shows the high-level structure of PREDICTOR. It contains an extensive database of 329 

results from 265 experimental take-over studies (largely from B. Zhang et al., 2019) (section 330 

4.2). Through the graphical user interface (section 4.3), the user can select specific 331 

parameters (e.g., specific alert modality, alert onset time) for which simulations need to be 332 

made. Under the hood, PREDICTOR then computes summary statistics (section 4.4), which 333 

https://predictor-tool.shinyapps.io/PREDICTOR/
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are then used to simulate 10,000 distributions for each stage (section 4.5). The output is then 334 

presented in the user interface in various ways (e.g., distributions of intervals for each stage, 335 

success rate of transitions; see section 4.6).  336 

 337 

 338 

Figure 2: Structure of PREDICTOR. PREDICTOR relies on a database of studies. Within 339 

the user interface, a user can select what parameters they want to focus on. Under the hood, 340 

the necessary computations are then done, which provide input to simulations of outcomes. 341 

These are then presented as output in the user interface. 342 

 343 

4.2 Database 344 

PREDICTOR relies on a database that summarizes findings from previous studies of take-345 

over processes. To demonstrate the functionality of PREDICTOR, it was included with data 346 

that was summarized in a meta-review by Zhang et al. (2019). As the focus of Zhang and 347 

colleagues was not on exploring all stages of the take-over process, all studies from their 348 

review (129 studies from 119 records) were re-examined to match data to specific stages (2-349 

 

Database Input Output 

User Interface 

Under the hood 

Computation Simulation 
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4) from the interruption framework (Janssen et al., 2019). Studies had to fulfill the following 350 

criteria to be included: 351 

1. The study had to involve a take-over process: a transition of control from automated 352 

driving (or the simulation thereof, e.g. using ‘Wizard of Oz’ ; Mok et al., 2015) to the 353 

human driver (i.e., SAE Level 3 or above). 354 

2. At least one experimental condition had to also involve a non-driving related task while 355 

automation was enabled. Otherwise, stage 2 could not be identified.  356 

3. The take-over had to be initiated by an external take-over request (i.e., an alert) to which 357 

the subject had to react. That is, no self-interruptions or driver-initiated transitions of 358 

control (Gerber et al., 2020). 359 

4. The study had to report the mean and standard deviation (or another metric from which 360 

these could be calculated) for at least one of the stages 2-5. 361 

5. The study had to be written in English, German, Dutch, or French (so the authors could 362 

understand the study details). 363 

After collecting all the data from each study matching those criteria, experimental groups 364 

were further removed if they did not match all criteria (e.g., if a condition did not have a non-365 

driving related task).  366 

 This resulted in a database of 265 experimental groups from 67 studies. In total, data 367 

from 2,591 participants were retrieved. Out of these studies, 64 studies came from the meta-368 

analysis by Zhang et al. (2019). As among these studies there were few studies that reported 369 

stages 2, 3, and 4, three other studies of which the authors knew that these stages were 370 

measured were also included in the database (Lotz et al., 2019; Van Der Heiden et al., 2017; 371 

Yoon et al., 2019).  372 

While stage 5 (physical transfer of control) is discussed in all but one study, 373 

information for other stages is reported less frequently, especially for stage 2 (Disengage), 374 



PREDICTOR 
 

 18 

and stage 4 (Suspend non-driving related task). This might be due to methodological reasons: 375 

stage 2, 3, and 4 require a measure of visual attention, such as eye-tracking, that not all 376 

studies might have available or report. More conceptually, driver distraction research is 377 

traditionally mostly focused on the effect that a non-driving related task has on (degradation 378 

of) driver performance (or reaction time to the alert: stage 5), and not on performance of the 379 

non-driving related task itself (e.g., stages 2 and 4). This contrasts with the interruption 380 

framework, where all stages are of interest. Users of PREDICTOR can also add their own 381 

data to the database of PREDICTOR.  382 

4.3 User Interface: Input 383 

The interface of PREDICTOR can be used to analyze what the impact is of specific human 384 

factors (as defined in section 3: alert onset time, Alert modality, NDRT input/output 385 

modality) on the time distribution of each stage of the take-over process. Figure 3 shows the 386 

basic interface (for details on output see section 4.6). Depending on the parameter, users 387 

either can select from pre-defined values (e.g., for modality: visual, auditory, tactile, or a 388 

combination) or define an exact point or range (e.g., for alert onset time: 5s, or 5-8s). Based 389 

on the choices for each parameter, the model then filters out entries in the database that do 390 

not match the selection. 391 

  392 
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 393 

Figure 3: UI at model initiation. The input is presented on the left side of the window and the 394 

output on the right side. At initiation, the transition of control considering the entire database 395 

is presented. 396 

 397 

 Users can choose how they want the stage onset times to be determined. In the 398 

literature, the stage onset times are typically reported in relation to the alert onset (stage 1) 399 

rather than relative to the preceding stage. By default, PREDICTOR uses the values as 400 

reported in the literature to simulate each stage of the transition of control, thus simulating 401 

each stage independently (i.e., the interval between stage 1 and the other stages). If the 402 

“Calculate RTs from stage to stage” tick box is selected, however, for each stage the model 403 

also takes into account the results from its preceding stage.  For a further discussion of the 404 

implications of this option, please see the Supplementary Materials (‘Details on Model’). 405 

4.4 Computation  406 

Based on the user’s input, under the hood, PREDICTOR makes calculations to transform the 407 

data from the subset of the database in a way that it can be given as input to the simulation 408 
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(section 4.5). To estimate variability and compare studies, the simulations use standard 409 

deviations. To calculate the means and standard deviations across multiple entries in the 410 

database (i.e., multiple samples), it normalizes the values from each study based on the 411 

number of participants that took part (see Supplementary Materials file ‘Details on Model’ 412 

for details). 413 

 414 

4.5 Simulation 415 

With the calculations done, PREDICTOR can now simulate data based on the selected 416 

datasets. For the simulation, it was assumed that the eventual distribution adheres to two 417 

assumptions that are common in reaction time studies: (1) The distribution is positively 418 

skewed, and (2) there are no negative reaction times. 419 

The first assumption was positive skewness.  This is often observed in reaction time 420 

data (for a general perspective see Ratcliff, 1993; for observations in take-over studies see B. 421 

Zhang et al., 2019). A ‘long tail’ occurs when a small but significant portion of the reaction 422 

times are much larger than the average, while very few, if any, are much shorter than 423 

average. In a take-over setting, this translates to a scenario where most drivers have similar, 424 

relatively short take-over times, while a small number requires more time to successfully 425 

take-over control. Although small in numbers, these outliers can pose a significant risk to 426 

road safety, as they might not take back control in time to accurately handle a critical event. 427 

Even though these are often treated as outliers and removed before analysis, considering 428 

them in PREDICTOR is thus especially important, as they play a major role in the success of 429 

the alert. 430 

The second assumption was that there are no negative reaction times. Negative reaction 431 

times would suggest that the take-over process was initiated by the driver before the alert 432 

onset. While this can happen in practice if the take-over is self-initiated by the driver (e.g., 433 
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Gerber et al., 2020), PREDICTOR focuses explicitly on the transition of control initiated by 434 

an external alert. For simulations that calculate the time distributions as intervals between 435 

stages, an additional assumption must be made to exclude negative values, namely that the 436 

stages of the transition of control always occur in the same order. While this is perhaps 437 

inevitably true between some stages (i.e., after alert onset the driver cannot orient towards the 438 

road (Stage 3) before first disengaging from the non-driving related task (Stage2)), 439 

exceptions to this rule might still occur. For example, in  (Petermeijer et al., 2017)  the 440 

participants took back control of the vehicle (Stage 5) on average 30ms before orienting 441 

towards the road (Stage 3).  442 

 To implement these assumptions, a log-normal distribution was used as underlying 443 

distribution from which a model can sample (see Supplementary Materials ‘Details on 444 

Model’ for details on how and why exactly). The model uses the log-normal distribution to 445 

sample what the data might look like if 10,000 observations were made that come from this 446 

log-normal distribution. Specifically, for each stage of the interruption process, 10,000 447 

samples are taken from the estimated log-normal distribution. The resulting values are then 448 

visualized in the user interface. 449 

 450 

4.6 User Interface: Output 451 

The right side of the user interface ( 452 

Figure 3) presents PREDICTOR’s output from the model simulations. Different aspects of 453 

the timing of stages in the take-over process are visualized in five panels: Transition of 454 

Control, Compare Simulations, Success Rate of Transitions, Summary, and Included Data. 455 

This allows scrutinous visual inspection of the data (cf. Donmez et al., 2023). Below we 456 
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describe these panels. More details can be found in the Supplementary Materials (‘Details on 457 

Model’ file). 458 

The transition of control panel (see Figure 3) is presented at model initiation. It 459 

visualizes per stage (2-5), what the simulated distribution is of times relative to onset of the 460 

alert (stage 1 in Janssen et al., 2019). The legend shows per stage how many studies provided 461 

input to the simulations. If no data is available to simulate a stage (given the selected 462 

parameter choices), the stage is not visualized. The simulation results in Figure 3 capture two 463 

expected patterns: (1) as the stages progress, the time progresses (i.e., the distribution of stage 464 

5 is more to the right compared to that of stage 2), (2) later stages have a wider distribution – 465 

as for each stage there might be some variability (or noise), which accumulates over stages.  466 

The ‘Compare Simulations’ panel displays four plots with the distributions of 467 

response times per stages (2, 3, 4, 5). If multiple simulations have been created, all 468 

simulations can be plotted simultaneously in each panel, with distinct transparent colors. 469 

The ‘Success Rate of Transitions’ panel (Figure 4) displays information about the 470 

predicted percentage of successful take-overs in relation to the timing / deadline of a critical 471 

event. At the top of the panel, a cumulative plot is displayed, including each stage of the 472 

currently selected simulation, along with a vertical line displaying the timing of a fictitious 473 

critical event. The user can adjust the time of the critical event, as well as the cut-off point of 474 

the x-axis. At the bottom, two tables are shown, one showing the time needed for specific 475 

proportions of simulated trials to reach each stage (left), and one showing how many 476 

simulated trials have reached each stage at a specific time in relation to the critical event 477 

(right). This panel gives the user a clearer picture about the rate of successful transitions of 478 

control in relation to the time of the critical event. From a safety perspective, it gives the user 479 

valuable insights on the proportion of drivers that are expected to fail to take back control in 480 

time to react appropriately to a critical event. 481 
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 482 

 483 

Figure 4: ‘Success Rate of Transitions’-Panel. The panel at the top shows a cumulative plot 484 

for each stage in relation to the critical event (vertical line). At the bottom, two tables are 485 

shown, one showing the times needed for each stage to reach a certain percentage of 486 

successful transitions (left), and one showing the percentage of successful transitions by time 487 

in relation to the critical event (right). 488 

 489 

Finally, the summary panel provides a table with summary statistics for each stage 490 

included in the simulation, and the included data panel (not visualized in this paper) shows 491 

the subset of the database that has been taken into consideration for the currently selected 492 

simulation. These panels can help users to find common traits and discrepancies between the 493 
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groups to look for new potentially interesting parameter combinations that may be interesting 494 

to inspect further. For example: do specific authors investigate specific stages or specific 495 

parameters (such as specific modalities)?  496 

5 Illustration of PREDICTOR’s functionality through critical tests 497 

The functionality of PREDICTOR is now illustrated through five critical tests. These 498 

analyses are not meant to be complete, but rather to (1) further demonstrate PREDICTOR’s 499 

functionality, and (2) reveal interesting patterns that emerge when results of studies that focus 500 

on different stages of the interruption process (Janssen et al., 2019) are combined into a 501 

single simulation model. 502 

Unless stated otherwise, the values for each stage were simulated independently from 503 

one another, with time intervals representing the interval between alert onset (stage 1) and the 504 

respective stage. Due to the expected skewness of the distributions, quartile deviation (QD) 505 

(Kokoska & Zwillinger, 2000)  is reported as a measure of spread of the data. QD is 506 

calculated as half of the distance between the 25th and 75th percentile.  507 

  508 

5.1 Test 1 – General Patterns in the Distribution of Stage Onset Times  509 

The goal of the first test was to uncover general patterns in the distribution of stage onset 510 

times during the transition of control, when considering all studies in the database (i.e., 511 

without splitting by human factors).  Figure 3 plots simulation results. There are distinct stage 512 

onset time distributions for stage 2 (M = 0.50 s, QD = 0.13 s), stage 3 (M = 1.23 s, QD = 0.47 513 

s), stage 4 (M = 3.84 s, QD = 1.67 s), and stage 5 (M = 2.56 s, QD = 0.90 s).  514 

From a safety and accident perspective, the long tails in the distribution of stage 5 515 

(i.e., physical transfer of control) elicited by the simulation suggest that a small yet 516 
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significant portion of transitions may result in an unsuccessful transition of control if current 517 

literature conventions are applied (e.g., to have a take-over time of 5-8 seconds cf., Gold et 518 

al., 2013; Mok et al., 2017). Specifically, after 8 seconds, 1.37% of simulated transitions have 519 

not been completed (7.86% had not yet reached completion after 5 s). Considering the 520 

negative consequences of a failed take-over, this rate can arguably be considered too high. 521 

Thus, while an alert being presented on such short notice might suffice in most cases, the 522 

model suggests that it is not sufficient to ensure overall road safety. It should be noted 523 

however, that some experimental groups considered for this simulation were exposed to 524 

longer alert onset times and may thus distort this result (more systematic analysis of the 525 

impact of alert onset is reported in ‘Test 5 - Rate of Successful Take-Overs Based on Alert 526 

Onset Time’). 527 

Perhaps surprisingly, the distribution of stage 4 seems to peak before stage 3, and also 528 

seems to have a wider distribution than stage 5 (whereas one might expect that distributions 529 

become wider for later stages due to accumulation of variability over time). A closer look at 530 

the underlying data reveals an explanation for the unexpected pattern: 5 of the 24 531 

experimental groups with reported results for stage 4 come from one study that used an alert 532 

onset time of 21 seconds (in the form of a pre-alert) (Van Der Heiden et al., 2017) all of 533 

which elicited a stage onset time for stage 4 that was above 8 seconds. This study only 534 

reported values for stage 4, thus not equally affecting the simulation of other stages (a 535 

comparatively large stage onset time could have been expected at least for stage 5 in this 536 

study). When re-running a simulation that omits these 5 experimental groups, the new 537 

estimated distribution of stage 4 (M = 1.43 s, QD = 0.62 s) is now located between stage 3 (M 538 

= 1.23 s, QD = 0.47 s) and stage 5 (M = 2.56 s, QD = 0.90 s), however being much closer to 539 

stage 3. This pattern now suggests that the onset of stage 4 occurs almost in parallel to the 540 

onset of stage 3. This may be due to the generally short alert onset times used in the literature 541 
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comprising the database (see Supplementary Materials ‘Details on Model’, Table A2). This 542 

might have motivated participants to take control as fast as possible, and a process of 543 

interleaving between driving and non-driving related activities might have been skipped (see 544 

e.g. Ch, 2023; Ch et al., 2024 for empirical studies that show how shorter alert onset intervals 545 

reduce the frequency with which interleaving is applied). 546 

 547 

5.2 Test 2 – Effect of Different Alert Modalities on the Transition of Control 548 

Next, the effect of alert modality on the take-over process was investigated. In the literature 549 

(B. Zhang et al., 2019), by far the most commonly used alert is a bi-modal visual-auditory 550 

alert   (in PREDICTOR’s database 49 papers; 173 experimental groups), followed by purely 551 

auditory alerts (16 papers; 41 experimental groups). Figure 5 plots PREDICTOR’s results for 552 

three different alert modalities1.  553 

The results (Figure 5) show that alert modality seems to mostly impact the early 554 

stages of the transition of control. The distributions of bi-modal alerts is more narrow (i.e., 555 

the red distribution that represents bi-modal alerts has a smaller quartile deviation) and more 556 

to the left (i.e., faster) compared to those of the auditory only and visual only alerts for initial 557 

disengagement (stage 2), orientation to the driver task (stage 3), and eventual task suspension 558 

(stage 4). However, eventual transition time (i.e., physical transfer of control, stage 5) seems 559 

hardly affected: the distributions of all three alert modalities overlap substantially.  560 

One interpretation of the results is that the early response to bi-modal alerts allows the 561 

user with more time to orient to the driving task (i.e., early onset of stage 3) and therefore 562 

more time to prepare for a smooth transition, compared to uni-modal alerts. This can benefit 563 

 
1 Note again that the number of studies varies for each stage, with data from the auditory only condition 

in stage 4 only coming again from one paper (Van Der Heiden et al., 2017) 
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safety. An implication is that bi-modal alerts should especially be applied when aiming for 564 

quick initial reactions from the driver (i.e., fast stage 2, 3).  565 

 566 

 567 

Figure 5: Distribution of the simulated data considering different alert modalities. Overall, 568 

the visual-auditory alert (red) resulted in the shortest stage onset times, compared to visual 569 

(blue) and auditory (green) alerts. This effect was most prevalent in earlier stages and 570 

dissipated in the final stage of the transition of control. 571 

 572 



PREDICTOR 
 

 28 

5.3 Test 3 - Effect of NDRT Output Modalities on the Transition of Control  573 

Next, a comparison of the effects of different output modalities for the non-driving related 574 

tasks was made. Three groups were distinguished, based on whether the authors of papers 575 

reported that their task: (1) had a manual component, (2) had a cognitive component, or (3) 576 

did not fall under category 1 or 2 (e.g., no response, or vocal response). Note that in some 577 

studies, authors reported that the non-driving related tasks had both a cognitive and a manual 578 

component. These were included in both category 1 and 2. 579 

 Figure 6 shows the results. For stages 2 and 4, results should not be interpreted due to 580 

the low number of studies in the “other” category. For stage 3, the distributions of the manual 581 

condition (M = 1.01 s, QD = 0.46 s) seem to overlap largely with the other condition (M = 582 

0.98 s, QD = 0.43 s). For stage 5, again the distributions of the three conditions overlap 583 

substantially between: manual (M = 2.20 s, QD = 0.94 s), cognitive (M = 2.10 s, QD = 0.81 584 

s), and other (M = 2.10 s, QD = 0.81 s). However, although subtle, the manual condition has 585 

a slightly wider distribution, which is visible in the longer tail of the distribution. This in turn 586 

resulted in a larger failure rate 8 seconds after onset of the alert for manual (1.94% of the 587 

simulations had not yet completed stage 5 at this point) compared to cognitive (0.66%) and 588 

other (0.82%) NDRTs. 589 

One interpretation of these results is that despite the common notion that visual-manual 590 

tasks can be more distracting in a driver distraction setting than cognitive tasks, cognitive 591 

tasks can cause a similar delay in eventual response time. Effects do show up when 592 

considering the tail of distributions. However, these simulations should be treated as 593 

indicators and predictions of patterns that further empirical work needs to experimentally 594 

verify before definitive conclusions are drawn. Note that especially for cognitive tasks few 595 

studies report effects on interim stages. 596 

 597 
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 598 

 599 

Figure 6: Distribution of the simulated data based on non-driving related task (NDRT) output 600 

modality. 601 

 602 

5.4 Test 4 – Interaction of Alert Modality and NDRT Input Modality 603 

The next test inspected how PREDICTOR performs when two parameters are manipulated 604 

simultaneously: alert modality and input modality of non-driving related tasks (NDRT). 605 

Following multiple resource theories (Salvucci & Taatgen, 2008, 2011; Wickens, 2002, 606 
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2008), it is hypothesized that when the modality of the alert and the non-driving related task 607 

overlap, task performance on at least one task declines. This might result in delays in 608 

responses to the alert in such conditions. However, an open question is which of the 4 stages 609 

might be affected most. 610 

Nine simulations were performed, one for each combination of alert modality (visual, 611 

auditory, visual-auditory) and non-driving related task input modality (visual, auditory, 612 

visual-auditory). Figure 7 shows a comparison of the simulated data per stage. Again, the 613 

number of observations per condition varies, and simulations that rely on few studies should 614 

be interpreted with caution. Nonetheless, the general pattern suggests that for early stages 615 

(stages 2, 3 – the first two rows of Figure 7), visual-auditory bi-modal alerts (green 616 

distributions) have typically the fastest response distributions, independent of the modality of 617 

the NDRT (columns in Figure 7). The effect on eventual physical transition (stage 5; last 618 

row) seems less clear. This pattern is consistent with the pattern found in test 2: bi-modal 619 

alerts seem to impact early stages of transition, but more empirical work is needed to see if 620 

and how it impacts later stages.  621 

 622 
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 623 

Figure 7: Simulated data per stage for visual (left), auditory (center), and visual-auditory 624 

(right) NDRT input-modalities. Each plot contains the distribution from simulations using 625 

visual (V), auditory (A), and visual-auditory (VA) alert modalities. 626 

 627 
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5.5 Test 5 - Rate of Successful Take-Overs Based on Alert Onset Time 628 

For the final test, PREDICTOR was used to investigate the effect of alert onset time on the 629 

rate of successful take-overs. A simulation was run for each of the four most common alert 630 

onset times: 3.5 seconds (13 experimental groups; 3 studies), 6 seconds (30 experimental 631 

groups; 9 studies), 7 seconds (69 experimental groups; 13 studies), and 10 seconds (42 632 

experimental groups; 10 studies). Note that although these studies exist in the literature, 633 

PREDICTOR can give novel insights due to its explicit simulation of a distribution of data, 634 

including more “extreme” datapoints that some empirical studies might consider ‘outliers’. 635 

 636 

 637 

Table 1 shows what percentage of drivers reached stage 5 by the time of the critical 638 

event (last row), or 1s or 2 s earlier (i.e., with some time to act before the event). These 639 

percentages are high in all scenarios for alert onset times of 6, 7, and 10 s. However, for the 640 

shortest alert onset time (3.5 s), only 85.16% had reached stage 5 at critical event onset. 641 

Table 1: Percentage of simulated trials having reached stage 5 (physical transfer of control) by alert 

onset time, in relation to the critical event onset. Generated using PREDICTOR’s ‘Success Rate of 

Transitions’ panel 

 Critical event onset 

 3.5 s 6 s 7 s 10 s 

2s before critical 

event 

55.82% 94.97% 99.24% 98.25% 

1s before critical 

event 

75.66% 98.24% 99.79% 99.01% 

Critical Event 85.16% 99.34% 99.95% 99.45% 
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These simulation results reinforce the consensus in the literature that giving an alert at least 642 

5-8 s before a critical event is necessary (e.g., Gold et al., 2013; Mok et al., 2017).  643 

However, there are also nuances. Consider for example the simulations when an alert 644 

had an onset of 6 s. Here, 5% of simulations had not reached the physical transfer stage 2s 645 

before the critical event onset (i.e., after 4 s), suggesting that 1 in 20 take-overs were 646 

completed at the last moment. Having such stricter criteria is useful, given that taking control 647 

of a vehicle does not always equate to a correct action. For example, remnant distractions 648 

from previous tasks might still linger (Strayer et al., 2015), and it might take a while before 649 

people have stable control over their vehicle (Merat et al., 2014). For a more detailed 650 

discussion, see Janssen et al. (2019). Having at least an onset of 7 s, seems better – as 2 s 651 

before the critical incident (i.e., within 5s of alert onset, the lower boundary of the 652 

recommended time) the large majority of simulations have completed the transition.  653 

6 General Discussion 654 

This paper introduced PREDICTOR: an interactive open-source software tool to predict how 655 

time is spent during various stages of a take-over process. The model simulations predict the 656 

distributions of timing of four stages of handling a take-over request, as previously 657 

introduced in a theoretical framework (Janssen et al., 2019). The main use of PREDICTOR is 658 

to explore how combinations of factors (e.g., alert onset and alert modality) impact these 659 

distributions, and how it influences the ability to meet a response time deadline. The 660 

combination of visualization and quantification of the predictions allows users to gain 661 

detailed insights in an interactive way. 662 

 PREDICTOR’s current functionality allows exploration of the effects of four human 663 

factors that are commonly reported in take-over studies (B. Zhang et al., 2019): alert onset 664 

deadline, alert modality, and input and output modality of the non-driving related task. 665 
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Although there are many studies that report how these individual factors impact eventual 666 

take-over time, PREDICTOR is novel in two ways: (1) it also simulates the effect on 667 

intermediate stages of the take-over, and (2) it visualizes and quantifies what the full 668 

distribution of times look like, thereby also giving insights into what percentage of 669 

simulations (as estimate of drivers) might for example not respond to an alert in time.  670 

The initial analyses (section 5) already gave various insights, of which three are 671 

further discussed here. First, PREDICTOR suggests that bi-modal alerts mostly seem to 672 

effect early stages of the take-over process, such as how fast someone initially disengages 673 

from a non-driving task (stage 2 in Janssen et al., 2019) and how fast they orient to the 674 

driving task (stage 3) (see section 5.2). Bi-modal alerts are already the most used alerts in 675 

take-over studies (B. Zhang et al., 2019), and multiple resource theories of cognition 676 

(Salvucci & Taatgen, 2008, 2011; Wickens, 2002, 2008) also explain why they can be 677 

effective: as there is more chance that one modality does not overlap with the modality of the 678 

non-driving related task and therefore can reach the user. However, PREDICTOR’s results 679 

suggest that bi-modal alerts do not necessarily speed-up eventual physical take-over, whereas 680 

some alerts might have been designed with that goal. 681 

Second, PREDICTOR’s simulations make explicit what percentage of drivers might 682 

not react in a timely manner (see section 5.5). In line with the underlying data (B. Zhang et 683 

al., 2019),  the large majority of simulated responses finishes the take-over within common 684 

response and alert guidelines of 5-8 s (e.g., Gold et al., 2013; Mok et al., 2017). That outliers 685 

are simulated is in part due to a technical reason: the model that underlies PREDICTOR 686 

assumes log-normal distributions, which are skewed. However, this assumption has merit, as 687 

skewed distributions are commonly observed in reaction time paradigms (Ratcliff, 1993). 688 

Moreover, it is PREDICTOR’s ability to combine datasets and then predict performance that 689 

gives various nuanced insights about these outliers. For example, that delays due to manual 690 
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interaction with a non-driving related task might particularly manifest themselves in delays 691 

on the eventual physical response (stage 5; see section 5.3). 692 

Third, PREDICTOR makes apparent where there are research gaps in available data 693 

and associated understanding of human behavior. Three of those are: (A) few studies 694 

explicitly differentiate between the first moment of disengagement (Stage 2) and eventual 695 

suspension of a non-driving related task, thereby limiting insights regarding under what 696 

conditions drivers might be interleaving; (B) few studies explore how behavior changes when 697 

drivers have a longer time to respond (alert onset time), even though this seems to impact the 698 

stages significantly; (C) studies that have cognitive non-driving related tasks only have data 699 

on the eventual physical transfer of control (stage 5), and not on earlier stages. This last 700 

aspect might in large part be due to methodological reasons: whereas with visual and manual 701 

tasks it is possible to measure whether someone is looking at or manually manipulating a 702 

driving or a non-driving task, it might be harder to assess when they first stopped thinking 703 

about a cognitive process (e.g., stage 2) and last stopped thinking about this (e.g., stage 4) 704 

(see also Held et al., 2024). There is potential here for recent (model-driven) neuroscience 705 

methods that are getting better at estimating cognitive stages that people go through (e.g., 706 

Borst & Anderson, 2023). 707 

A limitation of the current work is that it only considered four human factors to use 708 

for generating different simulations with (see section 3). These were chosen due to their 709 

commonality in studies and the availability of sufficient data to generate simulations. 710 

However, other factors (also beyond ‘human’ factors) can also be considered but require 711 

further scrutiny of the data and more empirical evidence. For example, the impact of 712 

operator/vehicle characteristics, different types of vehicular movements, and varying 713 

roadway/environmental conditions. PREDICTOR allows users to do these and other analyses 714 

and allows them to add new data to refine insights.  715 
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PREDICTOR’s simulations are based on a mix of psychological theory (which 716 

identified the stages) and data-driven inference (based on the meta-review from Zhang et al., 717 

2019). To get to a deeper understanding of the mechanisms behind human behavior, even 718 

more advanced computational cognitive models of the underlying (cognitive) processes are 719 

needed. Recent literature reviews suggest that this is an area that has only just started to 720 

develop, and more research is needed before such detailed simulations can be made (Janssen 721 

et al., 2020, 2022, 2024; Lorenz et al., 2024).  722 

The current model only makes predictions of time distributions; other metrics such as 723 

take-over quality / success, or situational awareness are not modelled. These can currently not 724 

be incorporated, as there are few studies that report such metrics and the way these measures 725 

are quantified also differs between studies, thereby limiting the ability to combine them in 726 

one simulation. Similarly, factors that are even further away from the take-over process itself 727 

such as comfort (Peng et al., 2024) and more strategic decisions (Y. Zhang et al., 2021) are 728 

not considered, as there is limited data to base simulations on.  729 

Another limitation is that the predictions of PREDICTOR stop at stage 5 of the full 730 

transition of control model (Janssen et al., 2019), the stage where the user first physically 731 

takes over control. Again, by itself this does not predict how the eventual drive is handled 732 

(stage 6), nor how the process of handing back control to the car is handled (stages 7-10). 733 

Nonetheless, the hope of the authors is that PREDICTOR is already a valuable tool that can 734 

aid researchers, designers, and engineers in their understanding of the take-over process. 735 

 736 

  737 
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