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ABSTRACT

We introduce a Hidden Markov Model framework to formalize the beliefs that hu-

mans may have about the mode in which a semi-automated vehicle is operating.

Previous research has identified various “levels of automation,” which serve to clar-

ify the di↵erent degrees of a vehicle’s automation capabilities and expected operator

involvement. However, a vehicle that is designed to perform at a certain level of

automation can actually operate across di↵erent modes of automation within its

designated level, and its operational mode might also change over time. Confusion

can arise when the user fails to understand the mode of automation that is in oper-

ation at any given time, and this potential for confusion is not captured in models

that simply identify levels of automation. In contrast, the Hidden Markov Model

framework provides a systematic and formal specification of mode confusion due

to incorrect user beliefs. The framework aligns with theory and practice in various

interdisciplinary approaches to the field of vehicle automation. Therefore, it con-

tributes to the principled design and evaluation of automated systems and future

transportation systems.
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1. Introduction

There is rapid progress towards the development of autonomous vehicles (Bengler et

al., 2014; Kun, Boll, & Schmidt, 2016). Vehicle automation can reduce the role of the

human agent by increasing the responsibilities (also referred to as authority, Flemisch

et al., 2012) of the driving task assumed by the vehicle, or non-human agent (Luettel,

Himmelsbach, & Wuensche, 2012).

However, autonomous vehicles are unlikely to be e↵ective for all driving situations.

Technology is limited in its ability to anticipate all possible tra�c situations, particu-

larly for rare events (Gold, Körber, Lechner, & Bengler, 2016). There are also ethical

dilemmas (Bonnefon, Shari↵, & Rahwan, 2016), and legislation requirements (Federal

Automated Vehicles Policy, 2016; Inners & Kun, 2017; Pearl, 2017) that may neces-

sitate a human agent to assume some level of vehicle control, when the non-human

agent is unable to perform all aspects of the driving task. This creates a system with

shared control between the human and non-human agents.

In systems with shared control, confusion regarding the control authority might

arise. Confusion is most prevalent in situations where the control authority shifts due

to changes in context. Three aspects of context changes are relevant. First, context

changes can happen unexpectedly (e.g., sudden snow, or a “rogue” vehicle). This might

leave the human agent with insu�cient time to observe and respond appropriately to

the context change (e.g., to take over the control of lateral position of the vehicle under

snowy conditions).

Second, an automated vehicle’s capabilities can change frequently in response to

varying context, even within a single trip. For example, its sensing capability can fluc-

tuate due to small pockets of fog, the safety criterion for velocity can change frequently

during rush hour, and ad hoc modifications to the infrastructure (e.g., construction

sites) can change tra�c patterns. Such rapid context changes might require the human

agent to pay attention and update their knowledge of their immediate surroundings
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frequently.

Third, users of autonomous vehicles can be expected to divert their attention away

from the driving task as the tasks become more automated (De Winter, Happee,

Martens, & Stanton, 2014; Warm, Parasuraman, &Matthews, 2008). This will interfere

with their ability to perceive and monitor changes in the vehicle’s mode of automation.

All these factors might hinder the human agent in keeping track of context changes,

which impact the mode of vehicle operation and the human agent’s associated respon-

sibilities. Poor in-vehicle interface design can also increase the likelihood of confusion

(Stanton & Marsden, 1996).

Although the research community has recognized the potential for human confusion,

the lack of alternatives have fostered research based on a classification scheme for the

automation, such as those developed by the Society of Automotive Engineers (SAE

International, 2014), the German Federal Highway Research Institute (BASt) (Gasser

& Westho↵, 2012), and the US Department of Transportation (National Highway

Tra�c Safety Administration, 2013) (e.g. Endsley, 2017; Kun et al., 2016; Kyriakidis

et al., 2017; Mok, Johns, Miller, & Ju, 2017; van der Heiden, Iqbal, & Janssen, 2017).

These frameworks focus on vehicle capability and functions, and capture the operations

of an automated vehicle from the system technology perspective, and in identifying

what features need to be engaged to accomplish automated driving. In such a view,

vehicle control is decomposed into sub-tasks (e.g., lane keeping and cruise control),

for which control authority is delegated either to the human or non-human agent,

depending on the context (e.g, autopilot might only be enabled on the freeway).

The responsibilities of the human and non-human agent are clear at the extreme

ends of such classification schemes. At one extreme is the no automation level where

all responsibility is with the human. At the other extreme is the full automation level,

where the non-human agent is fully in charge. Yet, a clear-cut division of labor does

not exist along the continuum between these extremes for two reasons. First, the

classification schemes only identify the number of functions that are automated, not

which functions are automated. For example, SAE level-1 automation might refer to

a vehicle with cruise control, but it can also refer to adaptive cruise control.

Second, there is the potential of frequent context changes and associated changes
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with respect to the responsibilities of the human and non-human agent. Confusion

due to context changes has been observed in practice (Endsley, 2017). Moreover, the

NHTSA report for the first fatal crash with an automated vehicle, suggests that there

was ’a period of extended distraction’ (p.9 in Habib, 2017). It is unclear whether the

distraction was due to mode confusion. Nonetheless, the long period of distraction

contravenes the user requirements of a SAE level-2 vehicle which requires eyes on

road. In other words, the user might have acted inappropriately despite the explicit

limitations of the system, which suggests a mode confusion.

In order to reduce the odds of mode confusion and, more broadly, to design auto-

mated vehicles that allow human and non-human agents to interact safely and e↵ec-

tively, we require a formal framework that articulates how the human agent’s beliefs

of control responsibilities might vary in response to varying automation across various

contexts. Such a framework will serve designers, engineers, and researchers in under-

standing (through formal explicit specification) di↵erences in the perceived roles of

the human and non-human agents across di↵erent scenarios. The goal of this paper is

therefore to provide a framework that will facilitate the development of systems that

will better communicate to the human the mode and limitations of the non-human

agent (or vehicle).

2. The Framework: Hidden Markov Models

The starting point of our framework for modeling the relationship between the non-

human and human agent are the following explicit assertions: vehicles can operate in

di↵erent modes of automation (even when designed for a specific automation level)

and the human agent’s beliefs about the vehicle’s modes can be incorrect. For a simple

example where adaptive cruise control (ACC) is on or o↵, Figure 1 illustrates four

unique combinations of (non-human) automation mode and human belief .

Signal Detection Theory (SDT) provides a concise description that explicitly dis-

tinguishes two types of incorrect beliefs: a false alarm occurs when the human is

“over-prepared” and incorrectly believes that action is needed even though automa-

tion is on, and a miss occurs when a human is “under-prepared” and fails to act
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due to an incorrect belief that automation is on but in fact, the automation is o↵.

More importantly, SDT provides the mathematics for formally deriving the ’sensitiv-

ity’ of the overall human-automation system, whereby an optimal situation is one that

maximizes the number of hits while minimizing false alarms (McNicol, 2005).

Lateral and 
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control

Human agent’s belief

Non-human 
agent mode

Lateral & 
longitudinal 

control 
(Manual)

Lateral control

Lateral & 
longitudinal 

control 
(Manual)

Lateral and 
longitudinal 

control

Lateral 
control
(ACC)

Lateral control

Lateral 
control
(ACC)

Human
in control

Automation
in control

ACC off

ACC on

Hit

Correct rejection

Miss

False alarm

Figure 1. A signal detection characterization of possible human beliefs (squares, varied between columns) of
the vehicle’s automation mode (circles, varied between rows).

Although SDT allows for a classification of unique combinations of (non-human)

agent modes and human agent beliefs and a derivation of sensitivity, it does not account

for the variable circumstances that induce each combination. For example, a human

may initially (and correctly) believe that ACC is on and therefore, they might not
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control longitudinal position themselves. However, there are circumstances where the

human is in a ‘miss’ situation, and incorrectly believes longitudinal control is still on

when it is not. To capture such dynamics, a framework is needed that can formalize

how combinations of human beliefs and automation modes can dynamically change

over time and situations, and that can model how likely such changes are.

We propose using Hidden Markov Models (HMM) (Rabiner, 1989) to capture

the dynamic nature of the transitions between the combinations. Similar to SDT,

HMMs provide an explicit systems level approach that can formally model the di↵er-

ence between the vehicle’s mode of automation and a human user’s beliefs over time.

In addition, HMMs can account for the uncertainty that is associated with the modes

and beliefs.

The framework makes explicit that a vehicle’s level of automation is dynamic. In

addition, it can represent transitions between di↵erent modes in a probabilistic fashion.

For example, a vehicle in manual control will remain in manual control with some

probability, Pi, and transition to ACC with some other probability, Pj . That is, mode

changes can occur over time and context. Furthermore, HMMs assign probabilities

to user beliefs associated with each mode of automation. Thus, when the vehicle is

under manual control, there is a large probability that the user also believes that it

is, in fact, under manual control. Yet, when the vehicle is under ACC control, there

is a non-zero probability that the user believes that ACC is on, as well as that the

vehicle is under manual control. In traditional HMM terminology, automation modes

represent the (hidden or latent) states of a Markov process, while user beliefs represent

the probabilistic observations of these states.

The scientific value of an HMM framework is that it allows potential problems

and types of confusions to be formally specified. By assigning probabilities to each

situation, it allows the likelihood of specific confusions (e.g., of misses and false alarms)

to be estimated, thus serving a theoretical or applicational purpose. Reciprocally,

empirical data can be used to update these likelihoods, thus providing a common

theoretical framework that can benefit from the incremental accumulation of research

evidence. Understanding these problems within a systematic framework should also

allow system designers to anticipate potential errors and to create principled solutions
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and approaches to addressing potential errors that result from user misunderstanding.

The value of the HMM framework will now be illustrated with three cases.

3. Cases

3.1. Case 1: Formalizing mode confusion in HMM
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Lateral, no 
longitudinal

Transition probability of 
human agent’s 

responsibility
(and mode)

Probability of
human agent’s belief
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position 
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(CC)
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a13
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a31

b33

a21

b32b31b22 b23b11

high high

Belief

Actual 
responsibility

Lateral &  
longitudinal 

position 
(Manual)

b21

Figure 2. Hidden Markov Model (state transition view) for a car with manual lateral control, conventional
cruise control (CC), and adaptive cruise control (ACC). Gold arrows (:) represent the transitions between
automation modes and corresponding responsibilities. Blue arrows (:) represent the belief likelihoods that
each automation mode might generate in the user. Some system modes can have false beliefs (i.e., mode
confusion) associated with them.

This first case (Figure 2) considers a perfect situation in which a vehicle has two op-

tional system functions: conventional cruise control (CC), and adaptive cruise control

(ACC) (both functions are classified as SAE level-1 automation; SAE International,

2014). In this HMM, there are three system modes: manual control, CC, and ACC.

The system can transition between these modes, with some transitions having higher

probability.

The characterization of mode transitions meets the Markov assumption that the

future mode of the system at time t + 1 depends on the current mode at time t. In

probabilistic terms, this also means that the probabilities of each transition from each

mode together sum up to 1. The transition probabilities from one mode to another in
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Figure 2 are marked as aij , 1  i, j  3, where the subscripts1 i, and j indicate the

current and next mode respectively. Thus,
3X

j=1

aij = 1 for all modes of i .

There are also three beliefs that the human agent can have, corresponding with

whether the system is in manual, CC, or ACC mode. However, in line with the signal

detection description in Figure 1, beliefs do not need to correspond with the actual

mode of the system. This is consistent with empirical observations that human actions

(e.g., initiating a mode change) might not always end up in the desired mode, and that

the human might not be aware of the resulting mode (Xiong, Boyle, Moeckli, Dow, &

Brown, 2012).

Formally, the HMM framework requires that all possible beliefs for a mode sum up

to 1. Figure 2 shows the probabilities of beliefs that are possible in any given mode i

as bik, for 1  i, k  3, for the current mode i, and the belief held by the human agent

as k. Thus,
3X

k=1

bik = 1 for all modes i.

The contribution of the HMM description is threefold. First, all combinations of

modes and beliefs can be expressed in a compact and formal manner. Notice that a

SDT description of this framework would require seven unique combinations of beliefs

and modes. Second, the framework makes explicit what transitions are possible and

how likely these transitions are and, thereby, makes the (hidden) assumptions of the

designer or researcher of the system explicit and open to discussion. Third, when

probabilities are assigned to the various modes and beliefs, the framework allows one

to calculate the likelihood of false alarms and misses.

3.2. Case 2: Formalizing mode confusion in a commercially available

system

Our second case describes the user experiences of a commercially available vehicle at

SAE automation level 2, the Tesla Model S. A Tesla model S provides adaptive cruise

control (ACC) as well as automated lane following (auto steer). This results in four

possible user beliefs concerning whether these systems are ‘on’ or ‘o↵’ (see Figure 3).

In an ideal world, there are also four system modes (a, b, c1, d in Figure 3). ACC

1The subscripts i and j are bound between 1 and 3 as there are three modes in this example
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(automation mode c1) and auto-steer (d), are both initiated via the same lever, which

is connected to the steering wheel. Moving the Cruise/Autopilot lever towards the

human driver once starts ACC only (mode c1), moving it towards the operator twice

in rapid succession leads to ACC with auto steer (mode d). Pressing the brake pedal

will always move the system to manual control, while manipulating the steering wheel

when ACC and auto steer are engaged will move the system to ACC2.

A. Lateral + 
longitudinal 

control
C. Lateral control D. Observe

d. Observe
(Auto-steer + 

ACC)

B. Lateral + 
velocity 

adjustment

a. Lateral & 
longitudinal 

control 
(Manual)

c1. Lateral 
control
(ACC)

b. Lateral + 
velocity 

adjustment
(ACC+velocity 

adjustment)

c3. Lat.cntr.
(ACC, 

attempted
 manual)

c2. Lateral 
control
(ACC, 

attempted  
auto-steer)

Belief

Actual 
responsibility

Transition probability of 
human agent’s responsibility

(and mode)

Probability of
human agent’s 

belief lowlow

high high

Figure 3. HMM framework (state transition view) that formalizes mode confusion in a level-2 automation
system. Note that one type of automation (ACC on) can be associated with multiple modes (c1,c2,c3), and,
therefore, with multiple beliefs. Gold arrows (:) represent the transitions between automation modes and
corresponding responsibilities. Blue arrows (:) represent the belief likelihoods that each automation mode
might generate in the user.

In spite of these distinct interaction designs, mode confusion can occur (e.g., Ends-

ley, 2017). For example, users might attempt to go to manual (mode a) by manipulating

the steering wheel, but instead end up in ACC (automation mode c3). In this mode,

the user might have the incorrect belief (false alarm in SDT terminology) that they

have manual control over all aspects of the vehicle (belief A). Conversely, the user

might also attempt to press the lever twice to start ACC and auto-steer (mode d) but

not succeed because they only manage to press the lever once. In the resulting mode

(c2) they might incorrectly believe that they can simply observe the car (belief D; a

miss in SDT terminology).

This case demonstrates how the HMM framework can capture mode confusion in

2A user demonstration of this system can be seen here: (Teslavangeliste, 2015).
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commercially available systems. The framework makes it very explicit that system

modes which are colloquially thought of as one mode, or one level of automation,

can in practice be divided into multiple modes. For example, colloquially one might

describe a system that incorporates Adaptive Cruise Control and auto-steer as a SAE

level-2 vehicle. However, this system has at least six modes, of which five (all but

mode d) do not meet the description of a typical SAE level-2 automation (i.e., with

the vehicle controlling lateral and longitudinal position on specific road segments).

3.3. Case 3: Including the context of space and time using the lattice view

The previous two cases represent a ”state transition” view of the system modes. It is

also important to consider the changes in modes and beliefs as the context changes

temporally and spatially. A contextual description can be created with the lattice view

of a Hidden Markov Model, as done in Figure 4. The figure focuses on three modes

from Figure 3 and shows how the system mode changes as a result of human action.

For example, imagine a driver that starts with ACC on (mode c1), wants to go to

Auto-steer mode and presses the Cruise/Autopilot lever, however, only one press is

registered. The human agent might believe that their responsibility is to observe (belief

D), whereas the car in fact is NOT in auto-steer and lateral control is needed (mode

c2). Now, the human belief might update when the human observes that the car does

not stay in the lane, for example when driving a curvy trajectory. This updates their

belief, and might trigger them to subsequently press the Cruise/Autopilot lever twice

again, to correctly go to a mode in which they can only observe (mode d, belief D).

This case demonstrates how the lattice view keeps track of how the system transitions

over time and space.

The lattice view provides insights on the transitions that can be made in the context

of all possible transitions during that time period and connects it to the context. Such

a contextual description is needed to make predictions for specific roads, tra�c, and

environmental conditions, and connects the results with the in-situ measurements of

human behavior and system functioning. Moreover, a contextual description over time

and space aligns with process oriented models of driver behavior and thought from

cognitive psychology (e.g. Brumby, Janssen, Kujala, & Salvucci, 2018). Therefore, it
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ACCx1 for auto-steer

Feedback:
No auto-steer

Driver action:
ACCx2

Figure 4. HMM framework (lattice view) of beliefs about lateral and longitudinal control in a specific driving
context (intersection, sketched at top). Various paths are possible over time for beliefs and responsibilities (:).
In this context a specific path of responsibilities (:) does not always align with beliefs (:) . User action (gray
areas) and feedback from the environment (green area) can change the modes and/or beliefs.

more naturally allows for modeling of human behavior over time.

4. General Discussion

We introduced Hidden Markov Models as a framework for representing the distribu-

tion of responsibilities between automated vehicles and human drivers in probabilistic

terms. The framework provides a novel perspective on mode confusion in four ways.

First, the framework makes explicit that vehicle automation modes can di↵er from a

user’s beliefs, as illustrated in the three case studies. Second, the framework makes

explicit that modes and beliefs are multidimensional and change over the context

(including space and time). Third, the flexibility in representational form makes the

framework versatile. Specifically, it can both be used in general system design and

analysis using the state transition view, or tied to specific contexts using the lattice
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view. Fourth, the consideration of multiple modes and beliefs and their transitions

allows for a probabilistic representation of mode confusion. As a consequence, it pro-

vides a useful tool to assist in the measurement, estimation, and inference regarding

the likelihood of specific errors.

The framework helps to formalize potential problems and types of confusions that

can exist. In its application, the HMM framework allows for a more systematic eval-

uation and proposed mitigation. For example, researchers can use the framework to

gather data on how often specific transitions occur and, hence, infer the likelihood

of human beliefs (e.g., by observing whether actions are made that are inconsistent

with the correct belief). Such empirical work combined with a formal framework can

be used to calculate or simulate the likelihood of actions that are inconsistent with

the correct belief. The lattice view (case 3) is particularly relevant given the emphasis

on context and its natural alignment with psychological process-oriented models of

human behavior and thought, including driver distraction (Brumby et al., 2018).

The three example cases illustrated a subset of the human beliefs and system modes,

as this was enough to demonstrate the basics of the framework (case 1), how this can

be applied to current commercially available systems (case 2), and how this applies to

specific contexts (case 3). The cases thereby illustrate the value for an interdisciplinary

field. The claim is not that the descriptions completely describe all modes, beliefs, and

transitions. This begs the question of when one can be certain that a formal model is

complete. This philosophical question can be considered as a strength of the approach:

it makes the assumptions (of the researcher or designer) behind the system explicit

and therefore open for debate.

A pragmatic attempt to have a complete model can be achieved in four steps. First,

start with the system design and formalize all known system modes and transitions,

including an exploration of possible human actions and whether these change the

mode (cf. Thimbleby, 2007). Second, assume that each mode has its own, unique

correct belief, yet that all other beliefs are possible alternatives for each mode. Third,

anticipate unknowns by also including a belief for ”other” to capture all unknowns

(i.e., similar to incorporation of an error term in statistical models). Fourth, use a

method of choice to prune false beliefs from the system, including consideration of
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resilience methods to prevent false beliefs. This fourth step can be done in a variety of

ways, including empirical studies, estimates based on other theories or models, design

sketches, or expert analysis. The benefit of this fourth explicit step is again that it

makes explicit why specific beliefs were pruned and that it forms solid documentation

for external evaluation of a system design (e.g., a safety assessment).

4.1. Interdisciplinary applications

Applying Hidden Markov Models to capture transitions of control and mode confusion

in automated systems is novel, yet builds on a long tradition of Markov Models and

probabilistic models, including their use in other human-computer interaction settings

(Thimbleby, 2007). Moreover, it naturally fits with theory and practice in multiple

disciplines, and thereby provides a useful tool to avoid being lost in translation and to

facilitate convergence in the field. Below we make suggestions of use for specific fields.

For engineering, computer science, and system design, using HMMs aligns with a

systems approach to design, in which system states (including automation modes)

and their transitions are explicitly identified. Existing frameworks of automation (e.g.

Gasser & Westho↵, 2012; National Highway Tra�c Safety Administration, 2013; SAE

International, 2014) do explicitly distinguish between the various stages of automation.

However, in contrast to the HMM framework, they do not currently incorporate human

beliefs and express them explicitly.

For psychology, human factors, and human-computer interaction, the HMM frame-

work allows a formal way to express theories of human behavior. Theories that natu-

rally fit with the framework are hierarchical decomposition of tasks (Card, Moran, &

Newell, 1983), including decomposition of human driving (Michon, 1985), and prob-

abilistic notions of human beliefs and Bayesian belief updating given observations of

actions (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017). Although such theories are

already combined in process-oriented models of driver behavior and thought (Brumby

et al., 2018), the HMM framework is explicitly framed in a way that aligns more nat-

urally with fields outside of psychology and, in principle, can be used both for in-situ

measurement (using the lattice view) and systems design. This provides room for more

cross-fertilization.
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For the field of design, the framework can make explicit the confusion that can arise

for which ‘automation modes’ and in which ‘context mode’. Subsequently, this focuses

research to address the specific interventions that have to be adopted in order to avoid

these specified confusions. Specifically: if the framework identifies a potential miss or

false alarm, how can design be used to mitigate that error?

Finally, for the assessment of driving safety, including by governments, the HMMs

provide a tool for assessing the safety of systems in general (using the state transition

view) or in specific contexts (using the lattice view). For example, such an assessment

can focus on the complexity of the system (e.g., how many modes are there? what

transitions are possible?), as well as on the anticipation of confusion in human beliefs

(e.g., what misses and false alarms have been identified and mitigated? how well have

those been mitigated? which misses and false alarms have been left out compared to

a full system that associates all beliefs with all modes?).

4.2. Extensions and future work

The potential for interdisciplinary use of the HMM framework also highlights several

opportunities for further work. We highlight six paths. First, the complexity of a

Hidden Markov description of mode confusion needs to be further investigated. In

general, the maximum complexity of a system with N modes is 2 ⇥ (N + 1)2. The

assumption behind this equation is that there are N modes between which there can

be transitions, including self-transitions. As there might also be unknown modes, we

allow one mode unknown to capture all these other modes, resulting in (N+1) modes.

The maximum number of transitions between these modes (including self-transition)

then becomes (N + 1)2. Similarly, in the maximum complexity case, each mode of

the world (including unknown) has its own belief associated with it. Also, in the

maximum complexity case, each possible mode might be connected with each possible

belief, again giving (N + 1)2 edges. The maximum complexity for any given number

of modes N , as estimated by the number of edges, then becomes 2⇥ (N + 1)2. As we

described earlier, in a pragmatic account there are multiple ways to prune this tree. For

example, in our case 1 (Figure 2), we pruned the maximum space of 2⇥ (3+ 1)2 = 32

edges to only 16 edges by not including an ”other” mode and by ruling out unlikely
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mode-belief connections, such as the belief that the car is in ACC mode when it is in

manual (and would slow down if the driver did not press the gas pedal).

Second, empirical evidence can be gathered to estimate the exact probabilities of

making a false belief. The HMM framework clarifies the modes, beliefs, and transitions

that ought to be considered, thus allowing for empirical investigations to be consistent

in their endeavors. The identification of these probabilities can be followed by estima-

tion and calculation. Even though there is no empirical estimate of exact probabilities,

there is empirical evidence of mode confusion in semi-automated vehicles (e.g. Endsley,

2017; Mok, Johns, Gowda, Sibi, & Ju, 2016).

Third, the framework would be useful in the application of sensor technology to

assess user state (e.g., eye-tracking for situational awareness) for varying system modes

and human beliefs. A system might be designed to assess the most likely belief of the

user in a probabilistic manner and to act on this uncertainty (e.g., for example using

a Partially Observable Markov Decision Process, see Howes, Chen, Acharya, & Lewis,

2018). For example, if the system detects that the user does not respond to lateral

sway (i.e., green segment in Figure 4), the car might infer that the user might not

have the appropriate belief about the system mode. The actions that are appropriate

for the non-human system is an important research question, but can include explicit

communication of system mode (e.g., an alert), acting on the appropriate mode (i.e.,

making a steering correction), and/or changing the system mode to better facilitate

the user’s beliefs.

Fourth, the framework can be used to further study user beliefs in relation to trust.

Dynamically adjusting the system mode, given an understanding of the changes in

user’s beliefs over time, might also be crucial given their trust in the automation (Abe

& Richardson, 2006; Bliss & Acton, 2003; Riener, Boll, & Kun, 2016; Wickens &

Dixon, 2007). Like user beliefs in general, trust in automation is no longer a chronic

user state that is dependent on a fixed level of system reliability. Instead, it could now

be considered in terms of expected user engagement, given the conditional likelihood

of mode transitions in the automation. An automated system with a high likelihood of

mode transitions need not be considered to be unreliable. However, it would mandate

more user engagement, the lack of which would be reflected as mode confusion.
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Fifth, it is an open question what platforms are best for the design of HMMs re-

garding human-automation interaction. Trade-o↵s for such e↵orts are described more

widely (including example code) in the book by Thimbleby (Thimbleby, 2007) for the

general domain of human-computer interaction.

Sixth, and finally,the application to high levels of automation can be considered.

For our framework, the potential confusion between user beliefs and system modes

is crucial. Even though some systems are designed to remove the human completely,

such as the Waymo (Google) autonomous car (i.e., they expect to achieve SAE level 5

automation), the human operator will still need to provide some input and updating.

For example, it might be necessary to inform the user about the current trajectory

of the drive (e.g. should the car take the ”fast” or ”scenic” route?). Although this

may appear as if human safety is not impacted, possible mode confusion needs to be

minimized regardless to enhance overall user experience (Kun et al., 2016).

5. Conclusions

In conclusion, this paper introduces Hidden Markov Models as a formal probabilistic

framework for describing the uncertainty about the combination of vehicle mode and

human beliefs, and the transitions between them. It is applicable to any situation

where some form of shared responsibilities between a human and a computer system

exist, even beyond the automotive context. The value of the work lies in the formal

representation of modes and beliefs, which uncovers hidden assumptions and hidden

problems in a way that can be alleviated by multiple disciplines.
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